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NOTATION

A Area of section

a Coefficient of area

b Coefficient of Ixo

c Coefficient of Iy°

CL Lift coefficient

CTi Thrust coefficient for nonviscous flow

D Diameter of propeller

f Maximum ordinate of mean line (camber line)

1xo Moment of inertia about an axis parallel to the x-axis and passing through the center of
gravity

Ixx Moment of inertia about the x-axis

I Moment of inertia about an axis parallel to the y-axis and passing through the center of
gravity

I Moment of inertia about the y-axisYy

I Length of blade section

MQb Bending moment from torque per blade

M Tb Bending moment from thrust per blade
6Xo Bending moment about abscissa with reference to the center of gravity

M Bending moment about ordinate with reference to the center of gravity

P Pitch at any radius

Qb Torque per blade

Q1 Torque for nonviscous flow

R Radius of propeller

Rc Radius of mean line

r Variable radius

r0 Radius of any propeller blade section

s Length of mean line

t Maximum thickness of section

Tb Thrust per blade

T. Thrust for nonviscous flow

Va Speed of advance of propeller
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z' Distance along mean line

N Abscissa of center of gravity with reference to midpoint of section

X1 Abscissa of nose with reference to axis through center of gravity

X2 Abscissa of tail with reference to axis through center of gravity

X 3  Abscissa of point of maximum thickness with reference to axis through center of gravity

y '/2 Ordinate of the section measured perpendicular to the mean line

F Ordinate of center of gravity with reference to nose-tail line

Y, Ordinate of nose with reference to axis through the center of gravity

Y2 Ordinate of back with reference to axis through the center of gravity

Y3 Ordinate of point of maximum thickness with reference to axis through the center of
gravity

a Number of blades

i Hydrodynamic pitch angle

e Drag-lift ratio

0 Angle of arc of the mean line

p Density

Tan- 1(P/D) = Corrected hydrodynamic pitch angle



ABSTRACT

An approximate method of obtaining stress in a propeller blade from

simple beam theory is presented. The method is designed to minimize the

work required for calculating the geonetric properties of the blade section.

An example is given with this method applied to a modern thickness form.

INTRODUCTION

The stress calculation usually applied to ship propellers was developed by D.W. Taylor.'

The basic assumptions are that t~e simple beam theory is applicable to a propeller blade and

that thrust and torque depend linearly on the radius. Usually the maximum stress is determined

for only one section of the blade close to the hub. The thickness of the sections is then

assumed to vary linearly with the distance from the hub.

As to the first assumption, a closer approximation to the stresses can be obtained if

the propeller blade is considered as a cantilever plate 2 rather than as I simple beam. How-

ever, the time required for determining the stresses of a cantilever plate appears to be ex-

cessive for the present application. Therefore, the assumption of the simple beam theory is

retained in the following consideration. As to the dependence of thrust and torque on the

radius, the circulatioa theory, developed since Taylor's work, makes possible the calculation

of thrust and torque distributions on a propeller blade. Assuming these distributions to be

known, the bending moments and stresses at any section can be calculated; thus the minimum

thickness of a section at any radius may be determined.

The problem then becomes one of obtaining the different geometric properties of the

blade sections. Muckle 3 has developed a simple method of obtaining the center of gravity

and moments of inertia for ogival sections. This method enables the designer to obtain

minimum thickness for these sections wi thout numerical integration for the geometric proper-

ties of the section. It is important that the blade thickness be kept at a minimum for efficien-

cy and cavitation considerations; therefore, there is a need for a method of obtaining the

geometric properties of sections of any shape quickly and accurately. In principle, these

properties can be derived by means of numerical integration; however, this is time consuming.

An approximate method is developed in this report for determining the stress in a propel-

ler blade and an example is given of its use. A method for determining the geometric proper-

ties of a blade section (similar to that given in Reference 3) is given for the TMB EPH thick-

ness form superimposed on several mean lines. By introducing correction factors, this has

been applied to other thickness forms in use today, i.e., NACA 16 and NACA 65A superim-

posed on the same mean lines.

1 References are listed on page 18.



STRESSES FROM BEAM THEORY

The stresses in a propeller blade are caused by thrust, torque, and centrifugal force.
The most important stresses are the bending stresses due to the thrust and torque. Bending
stress due to centrifugal force requires consideration when the blades are raked. The other
stresses, that is, shear caused by thrust and torque and tension caused by centrifugal force,

are usually negligible.

For this particular development, only the bending stresses caused by thrust and torque
will be considered (Figure 1). For the determination of stress caused by centrifugal force

see References 1 and 3.

Assuming that the thrust and torque distribution(d Tb/dr and dQb/dr)'on the propeller
blade are known, the bending moment at radius ro caused by the thrust is given as:

R dTb
MT f (r - ro) -dt

Tb 0 dr

and that by the torque as:

M R /r-roidQbd
M -bf -

where R is the radius of the propeller and r is a variable radius.

The bending moments are resolved into two moments: M about an axis parallel to the
nose-tail line of the section and the other Mr perpendicular to this line. Both of these axesYO
00 and yo pass through the center of gravity (centroid) of the blade section (Figure 2). When

the pitch angle q5 and the moments MTb and
MQb are known, the bending moments about

dTb the xo and y -axes are given as follows:

Mo 0 - MTb cos 4 + MQb sin 0

X my =MTb sin S-MQ5cos

dQb The positive sense of each of these moments
is indicated in Figure 2.

If Ix and I are the moments of inertia
about the z0 -and y 0-axes, the stresses in the

4 yblade are given by the following relationships:

Figure 1 - Forces on a Blade Section
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Figure 2 - Geometric Properties of a Blade Section

' i~yl Mx 0  xt M0
l Stress in leading edge = - O Y0

lye

0

Stres Nos triln Tail lo

Stress on back at point of maximum thickness L neo 0

1 1

0 YO

A positive stress denotes tension and a negative stress denotes compression.
As shown in Figure 2, z, X2 , and X3 are abscissas of the nose, tail, and point of

maximum thickness, respectively. Likewise, y,, Y2', and y3 are ordinates of the nose, tail,
and point of maximum thickness. It should be noted that the X- and y-coordinates must be

used with their proper signs in order to obtain the correct signs for the stresses from the

above formulas.

QUANTITIES ARISING FROM THE GEOMETRY OF THE SECTION

Once the bending moments are derived, the problem becomes one of obtaining the geo-

metric properties of the blade sections. These properties are evaluated by solving the follow-

ing integrals between their proper limits in which the z-axis is the nose-tail line and the



Area

BoFionre ditac to centerate of gradityio

ufe 8).d
AreA

Veirticnal distance to center of gravity
-ffe dgdz

- A

Voerta ditneto abouter gavity

f ffyi de

Moment of inertia about w-axis

I~ ff Y2 dyda

These integrals are. ovalutated for several section forms.



TABLE 1

Offsets for TMB EPH Sections

Y/ r2 X,, Y'/2
x'/l T x'/l

t t

0 0 0.500 0.4946

0.005 0.0756 0.550 0.4830

0.010 0.1064 0.600 0.4647

0.020 0.1498 0.650 0.4399

0.040 0.2092 0.700 0.4085

0.070 0.2717 0.750 0.3705

0.100 0.3186 0.800 0.3260

0.150 0.3774 0.850 0.2749

0.200 0.4204 0.900 0.2170

0.250 0.4522 0.930 0.1778

0.300 0.4750 0.950 0.1480

0.350 0.4902 0.970 0.1129

0.400 0.4983 0.990 0.0642

0.43613 0.5000 1.000 0

0.450 0.4997

Nose: 0:x7l 0.4361302

( 0.4361302)

Body: 0.4361302!x'/t:0.8722604

I ( '/ .1 ) 2 + 2 2 ( 11 -2 ) IT 60.-4361302 F

Tail: 0.8722604 x'/l< 1

0.3083906 t
6 The radius of the nose is 0.5732 t2/7, the radius of the tail 0.2027 t2/1
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EPH - THICKNESS FORM, CIRCULAR ARC MEAN LINE

The usual method of approach is to solve the preceding integrals by the use of

Simpson's Rule. A direct solution can be made if the section chosen can be expressed
mathematically. The TMB EPH thickness form (see Table 1) is formed of parts of an ellipse,
a parabola, and a hyperbola; therefore, it can be expressed mathematically. Likewise, a
circular arc mean line can be represented by a simple mathematical expression. For this

reason, the foregoing integrals were solved using the EPH section in combination with a cir-

cular arc mean line.

The method of solution was first to transform the formulas both for the three parts of

the EPH section and for the geometric properties into polar coordinates r and 0 (Figure 3).

Thus, using polar coordinates, the formulas are expressed as follows, where y*/2 is
the ordinate of the section measured perpendicularly to the mean line:

02 (R+y"/2) 02
A=f f rdrdO = f y'R e dO [1]

02 (R+y'/2) 02 2
, f ,r 2 sin0drdO f Re siny' + - dO

0 1 (Re Y/2) 12 Rc
A A

[2]

?R2sin 2 t9 yodo
.0 1  when t/O0.21 and /lS0.05

A

02 (R + y'/2)

f f ,r[r cos 0 - (Re -f)] dd0

SA(RC-Y'/2)[3

02 (R +y'2) 2IX, f fC r[r cos 0- (Re - f)I drdO [4]

01 (R -Y /2)

=Y f rPsin2 0 drdO . f R 3 sinaO y, 1 + 1 dO

t 0 [5]
2 fR sin 2 0 y'dO, when t/l -. 21 and f/ 1-50.05[

01
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Within the range: 0.06387 A5 C5<0.5 -

S-0o. RIO,t 0.18613 + 0.12774 -- [6]
Y/

0.43613 8 82

Within the range: -0.37226 0- 0.06387 -L

RO R,

Y'= 2.62868 t0.37634 + 0.12774 [7]"8 s2 / [7

Within the range: - 0.5 L!50! - 0.37226 -!LRe- Re

Re .583 + RV 0 [8]
" 0.6 7 .55839 + 1.61678 a 82

In these equations, Rc is the radius, f is the maximum height, and 8 is the length of

the mean line and I is the length of the nose-tail line.

The next step involves substituting Equations [6], [7], and [81 into Equations [1], [2],
[3], [4], and [5]. It will be noted that when these substitutions are made, integrands of ihe

form sin 0Vf(O) and cos '0 \Ifvf- are obtained. An approximate solution for these integrals

can be obtained by expanding sin 0 and 0. Assuming sin 0 _ 0 - 03/6 and

cos 0 = 1 - 02/2 + 04/24, a very close approximation will be obtained since the camber ratio

f/i is normally less than 0.05. For this value of f/l, sin 0 and cos 0 are correct to four places.

This integration is performed separately for each of the three parts of the blade section.

By adding the resuits of these separate integrations, the geometric properties of the whole

section are obtained as follows:

A = 0.746 8t

=- 0.027 8 + 0.00528 83

R'2

of-0.025 62 +0.06 t2
R, Re__

-f 0.04487 8 t3 + 0.08975 8 + 0.001625 8 313

+ 0.746 ,tf2 - 0.04468 a!tf + 0.00188 8 9 -
ReRt



I M 0.04469 a3t - 0.012948 St

For use in the stress formula, the moments of inertia must be taken about the center of

gravity and #, z 2 0 030 Y12 Y' and £/3 must be obtained from F and y(Figure 2). Thus the

following equations result:

A - 0.746 8t

X1 = 0.51 - 0.0278 - 0.00528 a3/R2

2 1

- 0.5 1 + (0.5 t + R0) sin 0.06887 8
Re RR

£12 =

,~0068 s o+25_ f -~e R + Y

S£3 - (0.b t + Re) cos 0.06387

0 - IX - A 2 = 0.04487 t 2 + 0.00391 82t
2

- 0.00645 +'0.00139 __ 0.00269 1 .
RRj 2  R

I -A 22 0.04415 - 0.0129 !- - 8 0.0000211'  A

Since from geometry

a -(4 /1+ 4(f/l) 2 -1 1 (for small cambers),

Re f ~z 2

and noting that t I (/l)l and f - (f/l)l, the equations can be written in terms of the section

length, thickness ratio, and camber ratio.

These equations are cumbersome, but their use can be simplified by limiting the thick.

ness ratio to the maximum value of 0.21 and the camber ratio to 0.05. The equations are

then evaluated for a number of different thickness and camber ratios. By plotting the resulting

values, the formulas may then be reduced to the following forms:



9

A =(a t/) 12  a from Figure 4

x- (0.47325 - 0.026 f/1)I

z 2  X 1

3 1 - 0.4361 1 + 0.17 (1) 2

y - (0.114 t/l + 0.79) (f/l) I

Y2 = Yl

Y3 0.5 t + 0.984 f + Y,

IXo =[b (f/1) 2 + 0.04487 (t/1) 3 ] 14 b from Figure 5

e f (c t/i) 14 c from Figure 6

0.752

AREA ( a t/1) 12

.750

0,749

Q748 -

0.747- - -

0.746
0 0.01 0.02 0.03 0.04 0.05

/'

Figure 4 -Curve for Obtaining Area of a Blade Section
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0 .0 4 4 4 . .. . . .... ... . . . .. . ... . . . .... ... . . .. .. ... . . ..

0.0442

Q0440 ---- -- + '

060436 "-

0.0434 -\

0.0432

0.0426

0 0.01 0.02 0.03 0.04 0.05

f/t

Figure 6 - Curve for Obtaining Moment of Inertia (1 e) of Blade Section

The quantities obtained for the EPH, circular arc section have been numerically com-

pared with the respective quantities for the EPH thickness form combined with a NACA
a - 1.0 and a = 0.8 mean line. Within the limits of accuracy of integration, the different mean

lines had no effect on the numerical results obtained.

The appendix gives an example of the use of the above equations.

NACA 16 THICKNESS FORM, a=0.8 MEAN LINE

The NACA 16 thickness form 4 has an elliptical nose similar to the EPH section but

with a thinner tail. Using this thickness form with a NACA a = 0.8 mean line, the geometric

properties were obtained numerically for various thickness and camber ratios. From these

results, correction factors were determined for the formulas developed previously. Thus, the

equations become:

A = 0.986 (a t/l) 12 a from Figure 4

- (0.4838 - 0.026 f/i) I

y2= (0 11 0l

S= - (0.113 ti + 0.782) (f/i)i
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/ 2 - 1

Y3 "(0.5t + f) + Yi

= 0.9925 [b(/i/') 2 + 0.04487 (/ )3 ] 4  b from Figure 5

IY0 M 0.946 (c t/1)14 c from Figure 6

When the quantities obtained for this section (NACA 16, a - 0.8) are compared numeri-

calIly with those obtained for NACA 16, circular arc and a - 1.0 sections, it can be shown

that the different mean lines have no effect on the numerical results.

NACA 65A THICKNESS FORM, a-0.8 (MODIFIED) MEAN LINE.

This section is a modified form of the NACA 65 section. A mean line, NACA a - 0.8

(modified), was designed for this form. 5 The NACA 65A thickness form is desirable for ship

propellers since the nose of the section is more blunt than an ellipse, and the tail is thicker

than that of the NACA .65 section.

Using the same method as followed with the NACA 16, a - 0.8 section, the formulas

for the geometric properties are:

A -0.903 (a /i) 12 a from Figure 4

01 (0.4467 - 0.026 f/i) I

x2  x I -.

3 x1 - 0.41 + 0.28 ( f)Y

y= - (0.115 /I + 0.798) (/1)

/2 Y1

93 0.5t + 0.96f + Yl

Io - 0.864 [6 (f/l )2 + 0.04487 (t/i)3 ]14 b from Figure 5

Iyo = 0.789 (0 t/i ) 14 c from Figure 6

As with the EPH and NACA 16 sections, the various mean lines have little effect on

the ,numerical results.

SUMMARY

1. It has been assumed that the simple beam theory can be applied to a propeller blade.

Certain approxi.mations can also be made to facilitate integratiop when determining the
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geometric properties of the section.

2. The formulas for the geometric properties of the EPH section are obtained in simplified

form by limiting the thickness ratio to 0.21 and the camber ratio to 0.05. These formulas

apply to the EPH section when used with the circular arc mean line. These same formulas

may also be used with the mean lines NACA a - 1.0 and a - 0.8 with sufficiently accurate

results.

3. Formulas for use with the NACA 16 and NACA 65A thickness forms are obtained by

applying correction factors to the formulas for the EPH section. The resulting equations are

applicable when these sections are used in conjunction with the circular arc, NACA a - 1.0,

NACA a - 0.8, or NACA a - 0.8 (modified) mean lines.

4. If desired, correction factors may be obtained for a number of other sections by a meth-

od similar to that used here.
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APPENDIX

SAMPLE STRESS CALCULATION

The following calculations apply to a propeller blade with EPH sections and circular

arc mean lines. It will be assumed that the distributions of the thrust coefficient (dCT,)/d,

lift coefficient CL, and hydrodynamic pitch angle 8 i are known from propeller theory. The

particulars for the propeller are assumed as follows:

Diameter - 20 ft

Speed of advance - 50 fps

Number of blades - 6

Length of section - 5.0 ft

Camber ratio - 0.018

Thickness ratio - 0.18
Pitch at 0.2R - 28.12 ft

Pitch angle at 0.2R - 64.31 deg

Density/2 = p/ 2 + 1 slug/ft3

IR dC t CL tanpjdo, I

0.2 0.122 0.222 1.982

0.3 0.310 0.266 1.305

0.4 0.533 0.242 0.963

0.5 0.732 0.194 0.754

0.6 0.850 0.154 0.612

0.7 0.876 0.123 0.519

0.8 0.781 0.099 0.432

0.9 0.559 0.077 0.372

1.0 0 0 0.324

The moments of thrust and torque will be obtained frow the following derivations and

by the use of Simpson's Rule:

For the moment of thrust MTb

dY'1 .. R2, V.1dP iwa dC-£

dTb 1- E tan Pi ' T 6 , 0.008
s eL

dTb R2riV 2 1 I tan g,) d
2 T
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Introducing the vondimensional radius z - rIR, one obtains:

damT = PR3vV0 2 1(1 1tan M9)(0 _adC
LR31?' 2 1dCT i

MR 3"v°:2"o (z-_ 0)(1 - d tan OjT) doTb s 8Xo do

For ,the moment of torque MQ b

dQj -r tan P1 dTj

dQb ( + a d q t

dM 6.(r-LO) dQ
-( .)Q

.1 (+ (p. -(r, 'tan 0, dT,

Introducing the nondimensional radius one obtains:

dM -=43 ,rV2 1 0 - ) (tan. ji + e ) dCT
Qb 2 T,

M E- ~R3vV a2.! } w--0 a dC Tidd. TMQ b a-2 Rsa - d
z0

The constant forMT b and MQb is

P R3rV ,2 1- 1,809,000 ,ft-lb

2a

Further:

rIR e E tan je I- e tan Pj (tan p+e)

0.2 0.036 0.0714 0.929 2.018

0.3 0.030 0.0392 0.961 1.335

0.4 0.033 0.0318 0.968 0.996

0.5 0.041 0.0309 0.969 0.795
0.6 0.052 0.0318 0.968 0.664

0.7 0.065 0.0337 0.966 0.584

0.8 0.081 0.0350 0.965 0.513
0.9 -0.104 0.0387 0.961 0.476

1.0 bo - - -
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The following calculations are restricted to the hub, radius zo " 0.2. MT5, for this
radius, follows from Simpson's Rule:

- 1 2 3 4. 5
--- an#T ) ( o Col. Simpson's

SI x 12 Multipliers f(MTb)

0.2 0.113 0 0 1 0
0.3 0.298 0.1 0.0298 4 0.1192
0.4 0.516 0.2 0.1032 2 0.2064
0.5 0.709 0.3 0.2127 4 0.8508
0.6 0.823 0.4 0.3292 2 0.6584

0.7 0.846 0.5 0.4230 4 1.6920
0.8 0.759 0.6 0.4554 2 0.9108
0.9 0.537 0.7 0.3759 4 1.5036
1.0 0 0.8 0 1 0

1 = 5.94-12

11309,000 Azy 1,809,000 • 0.1 • 5.9412 259,280 ft-lb
MTb 8 3 3

MQb is obtained by the samemethod as applied to MTb.

1,809,000 • Ax - 19 fM b 184,950 ft-lIb

The bending moments about the center of gravity are given as follows:

Mo- b Cos 95 + MQb Sin '5

sin q - 0.901

cos 4- 0,434

MNo -2 59,230 • 0.434 + 164,950 • 0.901 - 261,130 ft-lb

My0 - MTb sin q5 - MQb cos q5

- 259,280 . 0.901 - 164,950. 0.484 - 161,980 ft-lb



The stress on the back of the blade at point of maximum thickness-is given by:

J/3 M2  0 zMy0
I- 0 - Y0

The distances from the center of gravity to the point of maximum thickness, and the

moments of inertia are given as follows (see page 9)

3 -(0.47325 - 0.026L)l - 0.43611 + 0.17 (

- 0.184 ft

Y3 -0.5t + 0.984f- 0.114 + 0.79 f

- 0.462 ft

i 0o W [6 (f/1) 2 + 0.04487 (t/l)3 ]14 6 from Figure 5

- [0.009(f/l )2 + 0.04487 (tj/l) 3 ] 14

- 0.1645 ft4

170 W (c t/l) 14 - (0.04407 t/l)14 c from Figure 6

- 4.958 ft4

The stress on the back at the point of maximum thickness is thus:

0.482 • 261,130 0.184 . 161,980

0.1645 4.980

- - 789,400 psf

or 5135 psi compressive stress.

In like manner, the stresses at the rose and tail have been calculated and are 44.3 psi

tension and 1,179 psi tension, respectively.
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For complete propeller stress analysis, these calculations must be made at a number

of radii.

REFERENCES

1. Taylor, D.W., "The Speed and Power of Ships," Ransdell, Inc., Washington D.C. (1933).

2. Reissner, Eric and Stein, Manuel, "Torsion and Transverse Bending of Cantilever

Plates," NACA TN 2369 (1951).

3. Muckle, W., "Stresses in Propeller Blades," The Shipbuilder and Marine Engine-Builder,

Vol. XLVII, No. 388, pp. 336-341 (November 1941).

4. Abbott, Ira H., et al, "Summary of Airfoil Data," NACA Report 824 (1945).

5. Loftin, Lawrence K., Jr., "Theoretical and Experimental Data for a Number of NACA

6A-series Airfoil Sections," NACA Report 903 (1948).



'9

INITIAL DISTRIBUTION

Copies Copies

12 Chief, BuShips, Library (Code 312) 1 DIR, St. Anthony Falls Hydraulic Lab, Univ of
5 Technical Library Minn, Minneapolis, Minn.
1 Tech Asst to Chief of Bureau (Code 106)
1 Prelim Des (Code 420) Polytechnic Inst of Brooklyn, Dept of Aero Engin
1 Machinery Des (Code 430) and Applied Mech,Brooklyn,N.Y. Attn: Di. H .
I Performance and Scientific (Code 436) Reissner
3 Propellers and Shafting (Code 554) 1 Penn State College, Ord Res Lab, State College,

2 Chief, BuOrd Pa. Attn: Dr. J.M. Robertson
1 Library (Code Ad3) 1 Propulsion Res Corp, Inglewood,Calif. Attn:
I (Code Re6a) Mr. W.D. Crater

3 Chief, BuAer 1 Stevens Inst of Tech, ETT, Hoboken, N.J. Attn:
1 Library (Code TD-42) Dr. K.S.M. Davidson
1 (Code De-3)
1 (Code RS-7) 1 Mr. R.W. Charles. Operation Civil Works,

Office of Engineers, Gravelly Point, Va.I 1 Chief, OPNAV

1 Chief, Nav Res, Attn: Mr. H.W. Boehly (466) 9 BJSM (NS)

1 CDR, USNOTS, Pasadena, Calif. 3 CJS

1 CDR, USNOL

1 DIR, USNRL

1 CO & DIR, USNEES

1 SUPT, USN Postgraduate School, Monterey, Cal.

1 SUPT., US Naval Academy, Annaoolis, Md.

1 Sec of the Air Force, Res and Dev Div

1 DIR, Langley Aero Lab, NACA, Langley Field,
Va. Attn: Mr. F.L. Thompson, Res Chief

1 D'IR, Tech Dev Div, U.S. Maritime Admin

1 DIR, Aero Res, NACA, Washington, D.C..

1 Chief, Marine Div, Corps of Engineers, Phila.
- Dist, Philadelphia, Pa.

1 CO, Transportation Res and Dev Command,
Fort Eustis, Va.

1 Gibbs and Cox, Inc., New York, N.Y.

1 Head, Dept of Nay Arch and Marine Engin, MIT

1 DIR, Iowa Inst of Hydraulic Res, State Univ of
Iowa, Iowa City, Iowa



4 oi

CP~C

Aid~~o

C. RI

Js COP 2 CO

F- S E E 04

w <0 m 8

0

6 0 .5 E v E
I ke

-a 0) -o- 0 t -

o =

0< - .5

at 61 C,2Do
-,t E0 v

m k

?L E E 0 0
0 as

~Zz -e a .O -8 < E
in0



d))

i MI

CD CO D m -

In'I

4) E

008

00

0'4 tE

a a. sn

0 (0

vi~~Sx

4F

fn o.'s bc

a)) z 5 *G

C,.r OD

04 E. 0 E.
J 0 o

o0

WW r0 0

H , 0--1

44 0.
40 ?LE 0(

zo 'j Z 0 00 0
cd ,e E


